CONTROL MODES

- Indexer, Point-to-Point, PVT
- Camming, Gearing, Position, Velocity, Torque

COMMAND INTERFACE

- CANopen/DeviceNet
- ASCII and discrete I/O
- Stepper commands
- $\pm 10 \mathrm{Vdc}$ analog position/velocity/torque *
- PWM velocity/torque command
- Master encoder (Gearing/Camming)

COMMUNICATIONS

- CANopen/DeviceNet
- RS-232

FEEDBACK

- Digital Quad A / B encoder
- Digital Halls

I/O - DIGITAL

- 10 inputs, 2 outputs

DIMENSIONS: MM [IN]

- $102 \times 69 \times 25$ [$4.0 \times 2.7 \times 1.0$]
* Available on RoHS versions

DESCRIPTION

Accelnet is a digital servo drive that combines CANopen networking with 100% digital control of brush or brushless motors in a pc board mounting package with power options to 10 Adc continuous and 20 Adc peak from 20 Vdc to 180 Vdc power supplies.
RoHS compliance is now standard on all models and with this a $\pm 10 \mathrm{Vdc}$ analog input has been added for position/velocity/torque control. The input takes the place of signal ground pins on non RoHS models so that RoHS types can be installed in place of non RoHS types with no change in function.
AcceInet operates as a Motion Control Device using the DSP-402 protocol under the CANopen DS-301 V4.01 (EN 50325-4) application layer. DSP-402 modes supported include Interpolated Position (PVT), Profile Position, Profile Velocity, Profile Torque, and Homing.
Ten logic inputs are configurable as CAN address bits, enables, limit \& home switches, motor temperature switch, stepper/encoder pulses, and reset. There are two logic outputs for reporting drive status, or driving a motor brake.
In addition to CANopen motion commands, Accelnet can operate using incremental position commands from step-motor controllers in Pls/Dir or CW/CCW format, as well as A/B quadrature commands from a master-encoder which can drive cam tables or be geared to ratio the drive position to that of the master-encoder.

Drive commissioning is facilitated by CME $2^{\text {TM }}$ software operating under Windows ${ }^{\circledR}$ communicating with Accelnet via an RS-232 link. Auto-tuning algorithms in CME $2^{\text {TM }}$ slash set up times for fast system commissioning by automating motor phasing, and currentloop tuning. A powerful oscilloscope and waveform generator display drive performance for fine tuning. Drive configurations are saved in non-volatile flash memory. OEM's can inventory one part, and configure drives on-site to each axis in a machine.
Space-vector modulation delivers higher motor speeds and lower motor power dissipation than conventional sine-pwm modulation. Carrier-cancellation modulation all but eliminates motor ripple current and dissipation at a standstill. Current-loop sampling is at 15 kHz , position and velocity loops at 3 kHz and PWM ripple at 30 kHz .
All drive circuits are DC coupled and operate from unregulated transformer-isolated linear DC power supplies, or regulated switching power supplies.
The PC board mounting package is suitable for high density, multiaxis installations in equipment where space is at a premium, and wiring must be minimized.

GENERAL SPECIFICATIONS

Test conditions: Load $=$ Wye connected load: $1 \mathrm{mH}+1 \Omega$ line-line. Ambient temperature $=25^{\circ} \mathrm{C} .+\mathrm{HV}=\mathrm{HV}_{\max }$

Type
TyM OUTPUTS
MOSFET 3-phase inverter, 15 kHz center-weighted PWM carrier, space-vector modulation

PWM ripple frequency	30 kHz
BANDWIDTH	2.5 kHz typical, bandwidth will vary with tuning \& load inductance
Current loop, small signal	Changes in HV do not affect bandwidth
HV Compensation	$15 \mathrm{kHz}(66.7 \mu \mathrm{~s})$

Position \& Velocity loop update
COMMAND INPUTS
CANopen bus
Digital position reference
Digital torque \& velocity referen

Analog torque/velocity/position

DIGITAL INPUTS (NOTE 1)	
Number	10
All inputs	74

 \(\begin{array}{ll} & \mathrm{RC} \text { time-constants assume active drive on inputs and do not include } 10 \mathrm{k} \Omega \text { pull-ups. } \\ \text { Logic levels } & \text { Vin-LO }<1.35 \mathrm{Vdc}, \mathrm{Vin}-\mathrm{HI}>3.65 \mathrm{Vdc}, \text { Maximum input voltage }=+10 \mathrm{Vdc}\end{array}\)
 Enable [IN1]
 1 dedicated input for drive enable, active level programmable, \(330 \mu \mathrm{~s}\) RC filter
 GP [IN2,3,4,5] 4 General Purpose inputs with \(330 \mu \mathrm{~s}\) (\(33 \mu \mathrm{~s}\) for [IN4]) RC filter, programmable functions,
 HS [IN6,7,8,9,10]
 and active level select
 5 High-Speed Inputs inputs with 100 ns RC filter, programmable functions, and active level select
 DIGITAL OUTPUTS (NOTE 1)
Type Current-sinking MOSFET open-drain output with $1 \mathrm{k} \Omega$ pull-up to +5 Vdc through diode
Functions 100 mAdc sink max, +30 Vdc max
Functions
Programmable with CME $2^{\text {TM }}$
Active Level Programmable to either HI (off, pull-up to +5 Vdc) or LO (on, current-sinking) when output is active
RS-232 COMMUNICATION PORT
Signals RxD, TxD, Gnd
Full-duplex, serial communication port for drive setup and control, 9,600 to 115,200 Baud
CANOPEN COMMUNICATION PORT
Signals CANH, CANL, Gnd. 1 Mbit/sec maximum.
Protocol CANopen Application Layer DS-301 V4.01
Device DSP-402 Device Profile for Drives and Motion Control
MOTOR CONNECTIONS
Motor U,V,W Drive outputs to 3-phase brushless motor, Wye or delta connected
For DC brush motor use outputs U \& V
Quadrature encoder, differential outputs ($A, / A, B, / B, X, / X$), 5 Mlines/sec (20 Mcount/sec after quadrature)
Halls Hall signals (U,V,W)
Motemp Motor temperature sensor or switch
PROTECTIONS

HV Overvoltage +185, +91, +56 Vdc
HV Undervoltage $\quad+\mathrm{HV}<+20 \mathrm{Vdc}$
Drive over temperature
Short circuits
$\mathrm{I}^{2} \mathrm{~T}$ Current limiting
Latching / Non-Latching

PWM minimum pulse width 220 ns
$\pm 10 \mathrm{Vdc}, 5 \mathrm{k} \Omega$ differential input impedance

Profile Position, Profile Velocity, Profile Torque Interpolated Position (PVT), Homing
Stepper commands (2 MHz maximum rate)
2 Mline/sec, (8 Mcount/sec after quadrature)
PWM $=0 \sim 100 \%$, Polarity $=1 / 0$
PWM $=50 \%+/-50 \%$, no polarity signal required
1 kHz minimum, 100 kHz maximum

DIGITAL INPUTS (NOTE 1)
10
All inputs $\quad 74 \mathrm{HC} 14$ Schmitt trigger operating from +5 Vdc with RC filter on input, $10 \mathrm{k} \Omega$ pull-up to +5 Vdc
RC time-constants assume active drive on inputs and do not include $10 \mathrm{k} \Omega$ pull-ups.
Vin-LO $<1.35 \mathrm{Vdc}, \mathrm{Vin}-\mathrm{HI}>3.65 \mathrm{Vdc}$, Maximum input voltage $=+10 \mathrm{Vdc}$
4 General Purpose inputs with $330 \mu \mathrm{~s}$ ($33 \mu \mathrm{~s}$ for [IN4]) RC filter, programmable functions,
5 High-Speed Inputs inputs with 100 ns RC filter, programmable functions, and active level select
DIGITAL OUTPUTS (NOTE 1)
Number
2
Current-sinking MOSFET open-drain output with $1 \mathrm{k} \Omega$ pull-up to +5 Vdc through diode
Programmable with CME $2^{\text {TM }}$
Programmable to either HI (off, pull-up to +5 Vdc) or LO (on, current-sinking) when output is active
RS-232 COMMUNICATION PORT
Signals RxD, TxD, Gnd
Full-duplex, serial communication port for drive setup and control, 9,600 to 115,200 Baud
CANOPEN COMMUNICATION PORT

NOTES

1. [IN1] is not programmable and always works as drive Enable. Other digital inputs are programmable.

AGENCY STANDARDS CONFORMANCE	
EN 55011: 1998	CISPR 11 (1997) Edition 2/Amendment 2:
	Limits and Methods of Measurement of Radio Disturbance Characteristics of Industrial, Scientific, and Medical (ISM) Radio Frequency Equipment
EN 61000-6-1 : 2001	Electromagnetic Compatibility Generic Immunity Requirements
Following the provisions of EC Directive 89/336/EEC:	
EN 60204-1 : 1997	Safety of Machinery - Electrical Equipment of Machines
Following the provisions of EC Directive 98/37/EC:	
UL 508C 3 ${ }^{\text {rd }}$ Ed. : 2002	UL Standard for Safety for Power Conversion Equipment

ACCELNET MODULE FEATURES

CANOPEN NETWORKING

Based on the CAN physical layer, a robust, two-wire communication bus originally designed for automotive use where low-cost and noise-immunity are essential, CANopen adds support for motion-control devices and command synchronization. The result is a highly effective combination of data-rate and low-cost for multi-axis motion control systems. Device synchronization enables multiple axes to coordinate moves as if they were driven from a single control card.

CANOPEN COMMUNICATION

Accelnet uses the CAN physical layer signals CANH, CANL, and GND for connection, and CANopen protocol for communication.
Before connecting Accelnet to the CAN network, it must be assigned a CAN address. This is done via the RS-232 port, which is also used for general drive setup. The CAN address is a combination of an internal address stored in flash memory, and digital inputs which have been configured to act as CAN address bits. A maximum of 127 CAN devices are allowed on a CAN bus network, so this limits the input pins used for this purpose to a maximum of seven, leaving three inputs available for other purposes. Most installations will use less than the maximum number of CAN devices, in which case the number of inputs used for a CAN address can be less than seven, leaving more inputs available for other functions.
When inputs are used for the CAN address bits, the internal address is added to the binary value that results from the inputs. If all the inputs are used as logic inputs, then the CAN address in flash memory is the drive CAN address.

RS-232 COMMUNICATION

Accelnet is configured via a three-wire, full-duplex RS-232 port that operates from 9,600 to 115,200 Baud. CME $2^{\text {TM }}$ software provides a graphic user interface (GUI) to set up all of Accelnet features via a computer serial port.
The RS-232 port is used for drive set up and configuration. Once configured, Accelnet can be used in stand-alone mode taking digital position, velocity, or torque commands from a controller, or as a networked drive on a CANopen bus.

PC BOARD MOUNTING

The small size, and cooling options enable Accelnet to be integrated into machinery with fewer cables and connections, and closer to the motor when required. Copley provides standard and low-profile heatsinks to match drive dissipation with ambient temperature and mounting conditions. In addition, the Accelnet case has tabs molded-in that accept Socket-A compatible chip-coolers (not available from Copley) which have integral fans to provide even greater cooling capacity.

REFERENCE INPUTS

As a network drive, the primary command input is the CANopen bus. But, Accelnet can also operate in stand-alone mode, taking position, velocity, or current (torque, force) commands in digital format from a motion controller.

DIGITAL REFERENCE INPUTS

Two logic inputs are used as digital reference inputs in the stand-alone mode. These will be assigned automatically to inputs that have the HS filters.
Current (torque, force) mode commands can be in one or two-wire format. In the one-wire format (50% PWM), a single input takes a square waveform that has a 50% duty cycle when the drive output should be zero. Thereafter, increasing the duty cycle to 100% will command an output current that will produce a maximum force or torque in a positive direction of motion, and decreasing the duty cycle to 0% will produce a maximum negative torque or force output.
In two-wire format (PWM/Dir), one input takes a PWM waveform of fixed frequency and variable duty cycle, and the other input takes a DC level that controls the polarity of the output current. The active level of the PWM signal for 0 current output is programmable. The direction of the force or torque produced will depend on the polarity of the DC signal on the direction input.

PWM/DIR INPUTS

PWM 50\% INPUTS

ANALOG COMMAND INPUT

RoHS models (green leaf on label) now feature an analog input for position/velocity/torque control. When using this input, $\operatorname{Ref}(+)$ and $\operatorname{Ref}(-)$ must both be connected to the controller. This differential connection is important for two reasons. First, for rejection of noise between controller and drive grounds. Second, because if one Ref input is left open, grounding of the other input will produce a $\pm 2 \%$ of peak-current command, not a 0\% command.

DIGITAL INPUTS

There are ten digital inputs to Accelnet, nine of which can be programmed to a selection of functions. The Enable input which controls the on/off state of the PWM outputs is fixed to [IN1] as a safety measure so that cannot be programmed in such a way that, once installed, it could not be shut down by the controller. The other nine inputs can be set to a selection of functions. Two types of RC filters are used: GP (General Purpose), and HS (High-Speed). Input functions such as Pulse/Direction, CW/CCW, Quad A/B typically are wired to inputs having the HS filters, and inputs with the GP filters are used for general purpose logic functions, limit switches, and the motor temperature sensor. Input [IN4] has a $33 \mu \mathrm{~s}$ RC filter.
Programmable functions of the I/O inputs are:

- Positive Limit switch
- Negative Limit switch
- Home switch
- Drive Reset
- PWM current or velocity control
- CAN address
- PIs/Dir, or CW/CCW step motor control pulses
- Quad A / B master encoder position commands
- Motor temperature sensor or switch input
- Motion Profile Abort

In addition to the selection of functions, the active level for each input is individually programmable.
Drive reset takes place on transitions of the input and is programmable to $1 / 0$ or $0 / 1$. The motor temp sensor function will disable the drive if a switch in the motor opens or closes when the motor overheats.

GENERAL-PURPOSE INPUTS

HIGH-SPEED INPUTS

DIGITAL OUTPUTS

The digital outputs [OUT1], and [OUT2] are open-drain MOSFETs with $1 \mathrm{k} \Omega$ pull-up resistors in series with a diode to +5 Vdc . They can sink up to 100 mAdc from external loads operating from power supplies to +30 Vdc .
The outputs are typically configured as drive fault and motor brake. Additional functions are programmable.
As a drive fault output, the active level is programmable to be HI or LO when a drive fault occurs. As a brake output, it is programmable to be either HI or LO to release a motor brake when the drive is enabled.
When driving inductive loads such as a relay, an external fly-back diode is required. A diode in the output is for driving PLC inputs that are opto-isolated and connected to +24 Vdc . The diode prevents conduction from +24 Vdc through the $1 \mathrm{k} \Omega$ resistor to +5 Vdc in the drive. This could turn the PLC input on, giving a false indication of the drive output state.

MOTOR CONNECTIONS

Motor connections are of three types: phase, Halls, and encoder. The phase connections carry the drive output currents that drive the motor to produce motion. The Hall signals are three digital signals that give absolute position feedback within an electrical commutation cycle. The encoder signals give incremental position feedback and are used for velocity and position modes, as well as sinusoidal commutation.

MOTOR ENCODER

The motor encoder interface is a differential line-receiver with R-C filtering on the inputs. Encoders with differential outputs are preferred because they are less susceptible to noise that can be picked on single-ended outputs. PC board layouts should route the encoder signal-pairs as close to each other as possible for best transmission-line characteristics. If single-ended encoders are used, a pull-up resistor should be installed on the PC board, and the unused input can be left open. If this is done, it is recommended that the inverting input be left open as its' open-circuit voltage of 2.0 Vdc (typical) is closer to TTL and CMOS levels than the non-inverting input which has an open-circuit voltage of 2.9 Vdc (typical). The encoder input circuit is shown below.

MOTOR PHASE CONNECTIONS

The drive output is a three-phase PWM inverter that converts the DC buss voltage (+HV) into three sinusoidal voltage waveforms that drive the motor phase-coils. The peak voltage between adjacent etches on the PC board is equal to the +HV power, and peak and continuous currents will not be greater than the ratings of the particular drive model. A trace width of 0.175 in, plating thickness of 3 oz copper, and spacing of 0.25 in is adequate for all models of Accelnet.

POWER SUPPLIES

Acce/net operates typically from transformer isolated, unregulated DC power supplies. These should be sized such that the maximum output voltage under high-line and no-load conditions does not exceed the drives maximum voltage rating. Power supply rating depends on the power delivered to the load by the drive. In many cases, the continuous power output of the drive is considerably higher than the actual power required by an incremental motion application.
Operation from regulated switching power supplies is possible if a diode is placed between the power supply and drive to prevent regenerative energy from reaching the output of the supply. If this is done, there must be external capacitance between the diode and drive. The minimum value required is $330 \mu \mathrm{~F}$ per drive.

AUX HV INPUT

Accelnet can continue to communicate on a CANopen network under EMO (EMergency Off) conditions if auxiliary DC power is connected to the Aux HV input. This powers the internal DC/DC converter so that motor position and drive communications are preserved while +HV is removed from the PWM inverter stage. The minimum voltage is +20 Vdc , and the maximum is the same as the drive maximum +HV rating. The current requirements will vary with voltage and can be calculated based on an average power consumption of 2.5 W .

MOUNTING AND COOLING

Accelnet mounts on PC boards using two, dual-row, 0.1 in female headers. These permit easy installation and removal of the drive without soldering. Threaded standoffs swaged into the PC board provide positive retention of the drive and permit mounting in any orientation. Cooling options are: no heatsink, convection heatsinks, and chipcooler heatsinks.
Convection heatsinks are available from Copley in standard, or low-profile forms.
Chip-cooler heatsinks are not sold by Copley, but are available from a wide range of sources. The Accelnet package has tabs that are designed to work with Socket-A clip-on heatsinks used most commonly in Pentium ${ }^{\circledR}$ b based, or equivalent computers. The chip-cooler heatsinks have integral fans which provide a forced airstream over the fins. The advantage of this is that airflow is guaranteed regardless of the drive mounting position.

NOTES

1. [IN1] always functions as Drive Enable and is not programmable.
[IN2] ~[IN10] are programmable.
2. HS inputs [IN6,7,8,9,10] are for high-speed signals and have 100 ns RC filters.

GP inputs [IN1,2,3,5] have 330μ s filters, [IN4] has a 33μ s filter.
RC filter time constants apply when inputs are driven by active sources and do not include the $10 \mathrm{k} \Omega$ pull-up resistors.

J2: Signal
Dual row, 0.1" centers
32 position female header SAMTEC SSW-116-01-S-D

Signal	J2 Pin		Signal
RS-232 TxD	2	1	RS-232 RxD
Signal Ground	4	3	Signal Ground
CANH	6	5	CANL
$\pm 10 \mathrm{~V}$ Ref(+)	8	7	$\pm 10 \mathrm{~V} \operatorname{Ref}(-)$
Fault [OUT1]	10	9	[OUT2] Brake
Signal Ground	12	11	[IN10] HSInput
HSInput [IN9]	14	13	[IN8] HSInput
HSInput [IN7]	16	15	[IN6] HSInput
GPInput [IN2]	18	17	[IN4] GPInput
GPInput [IN3]	20	19	[IN1] GPInput
Signal Ground	22	21	Signal Ground
GPInput [IN5]	24	23	Hall V
Hall W	26	25	Hall U
Encoder /X	28	27	Encoder X
Encoder /B	30	29	Encoder B
Encoder /A	32	31	Encoder A

NOTES

1. Signals are grouped for current-sharing on the power connector. When laying out pc board artworks, all pins in groups having the same signal name must be connected.

Drive viewed from above looking down on the pc board on which it is mounted.
Pins and housing shapes are shown in phantom view.

J1: +HV, Aux HV, Gnd, \& Motor Outputs
Dual row, 0.1" centers
Female header
SAMTEC SSW-125-01-S-D

Signal	J1 Pin		Signal
Motor U	2	1	Motor U
	4	3	
	6	5	
No Connection	8	7	No Connection
	10	9	
Motor V	12	11	Motor V
	14	13	
	16	15	
No Connection	18	17	No Connection
	20	19	
Motor W	22	21	Motor W
	24	23	
	26	25	
No Connection	28	27	No Connection
	30	29	
HV COM (Ground)	32	31	HV COM (Ground)
	34	33	
	36	35	
	38	37	
No Connection	40	39	No Connection
+HV	42	41	+HV
	44	43	
	46	45	
No Connection	48	47	No Connection
Aux HV	50	49	Aux HV

Accelnet Module
PC BOARD DESIGN

Printed circuit board layouts for Accelnet drives should follow some simple rules:

1. Install a low-ESR electrolytic capacitor not more than 12 inches from the drive. PWM drives produce ripple currents in their DC supply conductors. Accelnet drives do not use internal electrolytic capacitors as these can be easily supplied by the printed circuit board. In order to provide a good, low-impedance path for these currents a low-ESR capacitor should be mounted as close to the drive as possible. $330 \mu \mathrm{~F}$ is a minimum value, with a voltage rating appropriate to the drive model and power supply.
2. Connect J1 signals (U, V, W outputs, $+H V$, and + HV Common) in pin-groups for current-sharing. The signals on J1 are all high-current types (with the exception of the +24 Vdc Aux HV supply). To carry these high currents (up to 20 Adc peak) the pins
of J1 must be used in multiples to divide the current and keep the current carrying capacity of the connectors within specification. The diagram on page 8 shows the pin groups that must be inter-connected to act as a single connection point for pc board traces.
3. Follow IPC-2221 rules for conductor thickness and minimum trace width of J1 signals. The width and plating should depend on the model of drive used, the maximum voltage, and maximum current expected to be used for that model. Power supply traces (+HV , + HV Common) should be routed close to each other to minimize the area of the loop enclosed by the drive DC power. Noise emission or effects on nearby circuitry are proportional to the area of this loop, so minimizing it is good layout practice.
Motor signals ($\mathrm{U}, \mathrm{V}, \mathrm{W}$) should also be routed close together. All the motor currents sum to zero, and while the instantaneous value
in a given phase will change, the sum of currents will be zero. So, keeping these traces as closely placed as possible will again minimize noise radiation due to motor phase currents.
Accelnet circuit grounds are electrically common, and connect internally. However, the J1 signals carry high currents while the grounds on J2 (signal ground) carry low currents. So, J2 signals should be routed away from, and never parallel to the signals on J1. Encoder signal pairs (A, /A, B, /B, and $X, / X$) should be routed close together for good transmission-line effect to reduce reflections and noise.
The drive heatplate is electrically isolated from all drive circuits. For best noise-immunity it is recommended to connect the standoffs to frame ground and to use metal mounting screws to maintain continuity between heatplate and standoffs.

DIMENSIONS

Accelnet Mounting Hardware:

Qty	Description	Mfgr	Part Number	Remarks
1	Socket Strip	Samtec	SSW-116-01-S-D	J2
1	Socket Strip	Samtec	SSW-125-01-S-D	J1
2	Standoff 6-32 $\times 3 / 8^{\prime \prime}$	PEM	KFE-632-12-ET	

Notes

1. J1 signals must be connected for current-sharing.
2. To determine copper width and thickness for J1 signals refer to specification IPC-2221.
(Association Connecting Electronic Industries, http://www.ipc.org)
3. Standoffs should be connected to etches on pc board that connect to frame ground for maximum noise suppression and immunity.

Accelnet Module

POWER DISSIPATION

The charts on this page show the drive internal power dissipation for different models under differing power supply and output current conditions. Drive output current is calculated from the motion profile, motor, and load conditions. The values on the chart represent the rms (root-mean-square) current that the drive would provide during operation. The +HV values are for the average DC voltage of the drive power supply.
When +HV and drive output current are known, the drive power dissipation can be found from the charts. The next step is to determine the temperature rise the drive will experience when it's installed. For example, if the ambient temperature in the drive enclosure is 40 ${ }^{\circ} \mathrm{C}$, and the heatplate temperature is to be limited to $65^{\circ} \mathrm{C}$ to avoid shutdown, the rise would be $25^{\circ} \mathrm{C}$.
Divide the temperature rise by drive dissipation to get a result in units of ${ }^{\circ} \mathrm{C} / \mathrm{W}$. For a model ACM-180-18 operating at 150 Vdc and outputting 4 Arms, the dissipation would be about 11 W . This would give $25^{\circ} \mathrm{C} / 11 \mathrm{~W}$, or $2.27^{\circ} \mathrm{C} / \mathrm{W}$ as the maximum thermal resistance (Rth) of a heatsink.
From the illustrations on the opposite page, if it is desired to use the drive without fan cooling, the -HS heatsink option would work as it has an Rth of $2.2^{\circ} \mathrm{C} / \mathrm{W}$.

HEATSINK INSTALLATION

If a heatsink is used it is mounted using the same type of screws used to mount the drive without a heatsink but slightly longer. Phase change material (PSM) is used in place of thermal grease. This material comes in sheet form and changes from solid to liquid form as the drive warms up. This forms an excellent thermal path from drive heatplate to heatsink for optimum heat transfer.

STEPS TO INSTALL

1. Remove the PSM (Phase Change Material) from the clear plastic carrier.
2. Place the PSM on the Accelnet aluminum heatplate taking care to center the PSM holes over the holes in the drive body.
3. Mount the heatsink onto the PSM again taking care to see that the holes in the heatsink, PSM, and drive all line up.
4. Torque the \#6-32 mounting screws to $8 \sim 10 \mathrm{lb}-\mathrm{in}(0.9 \sim 1.13 \mathrm{~N} \cdot \mathrm{~m})$.

Rth expresses the rise in temperature of the drive per Watt of internal power loss. The units of Rth are ${ }^{\circ} \mathrm{C} / \mathrm{W}$, where the ${ }^{\circ} \mathrm{C}$ represent the rise above ambient in degrees Celsius. The data below show thermal resistances under convection, or fan-cooled conditions for the no-heatsink, HL, and HS heatsinks, and for the chip-cooler with integral fan.
NO HEATSINK

NO HEATSINK	${ }^{\circ} \mathbf{C} / \mathbf{W}$
CONVECTION	6.2
FORCE AIR (300 LFM)	2.1

LOW-PROFILE HEATSINK (ACM-HL)

STANDARD HEATSINK (ACM-HS)

Dimensions in inches using recommended connectors and standoffs (see page 9)

CHIP-COOLER HEATSINKS

(SHOWN FOR EXAMPLE ONLY. NOT AVAILABLE FROM COPLEY CONTROLS)

CHIP-COOLER	${ }^{\circ} \mathbf{C} / \mathbf{W}$
WITH 24VDC/2W FAN (HF-24)	0.5

Notes:

1. Thermal data is approximate and based on one unit tested. Users should qualify chip coolers with drive under actual operating conditions.
2. Chip cooler dimensions will vary with model.

ORDERING GUIDE

PART NUMBER	DESCRIPTION
ACM-055-18	Accelnef ${ }^{\text {TM }}$ Servodrive 6/18 Adc @ 55 Vdc
ACM-090-09	Accelnef ${ }^{\text {TM }}$ Servodrive 3/9 Adc @ 90 Vdc
ACM-180-09	Accelnef ${ }^{\text {TM }}$ Servodrive 3/9 Adc @ 180 Vdc
ACM-180-18	Accelnef ${ }^{\text {TM }}$ Servodrive 6/18 Adc @ 180 Vdc
ACM-180-20	Accelnef ${ }^{\text {fM }}$ Servodrive 10/20 Adc @ 180 Vdc
MDK-180-01	Accelnef ${ }^{\text {TM }}$ Development Kit
MDK-CK	Accelnef ${ }^{\text {TM }}$ Development Kit Connector Kit
ACM-HL	Accelnet ${ }^{\text {TM }}$ Module Heatsink Kit, Low-profile
ACM-HS	Accelnef ${ }^{\text {TM }}$ Module Heatsink Kit, Standard
CME2	CME $2^{\text {TM }}$ Drive Configuration Software CD-ROM
SER-CK	Serial Cable Kit

ORDERING INSTRUCTIONS
Example: Order 1 ACM-090-09 drive with Standard
Heatsink, Development Kit, and Development Kit
Connector Kit
Qty

Item Remarks \quad Rem | 1 | ACM-090-09 | Accelnet servo drive |
| :---: | :--- | :--- |
| 1 | ACM-HS | Standard Heatsink |
| 1 | MDK-180-01 | Accelnet Development Kit |
| 1 | MDK-CK | Connector Kit for Development Kit |
| 1 | CME2 | CME2 |
| 1 | SER-CK | Serial Cable Kit |

NOTES

1. Heatsink kits are ordered separately and installed by the customer, not at the factory.

